Models and Algorithms in Biological Network Evolution with Modularity
نویسنده
چکیده
Networks are commonly used to represent key processes in biology; examples include transcriptional regulatory networks, protein-protein interaction (PPI) networks, metabolic networks, etc. Databases store many such networks, as graphs, observed or inferred. Generative models for these networks have been proposed. For PPI networks, current models are based on duplication and divergence (D&D): a node (gene) is duplicated and inherits some subset of the connections of the original node. An early finding about biological networks is modularity: a higher-level structure is prevalent consisting of well connected subgraphs with less substantial connectivity to other such subgraphs. While D&Dmodels spontaneously generate modular structures, neither have these structures been compared with those in the databases nor are D&Dmodels known tomaintain and evolve them. Given that the preferred generative models are based on D&D, the network inference models are also based on the same principle. We describe NEMo (Network Evolution with Modularity), a newmodel that embodies modularity. It consists of two layers: the lower layer is a derivation of the D&D process thus nodeand-edge based, while the upper layer is module-aware. NEMo allows modules to appear and disappear, to fission and to merge, all driven by the underlying edge-level events using a duplication-based process. We also introduce measures to compare biological networks in terms of their modular structure. We present an extensive study of six model organisms across six public databases aimed at uncovering commonalities in network structure. We then use these commonalities as reference against which to compare the networks generated by D&Dmodels and by our module-aware model NEMo. We find that, by restricting our data to high-confidence interactions, a number of shared structural features can be identified among the six species and six databases. When comparing these characteristics with those extracted from the networks produced by D&D models and our NEMo model, we further find that the networks generated by NEMo exhibit structural characteristics much closer to those of the PPI networks of the model organisms. We conclude that modularity in PPI networks takes a particular form, one that is better approximated by the module-aware NEMomodel than by other current models. Finally, we draft the ideas for a module-aware network inference model that uses an altered form of our module-aware NEMo as the core component, from a parsimony perspective.
منابع مشابه
Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملSpontaneous evolution of modularity and network motifs.
Biological networks have an inherent simplicity: they are modular with a design that can be separated into units that perform almost independently. Furthermore, they show reuse of recurring patterns termed network motifs. Little is known about the evolutionary origin of these properties. Current models of biological evolution typically produce networks that are highly nonmodular and lack unders...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملGenetic interference reduces the evolvability of modular and non-modular visual neural networks.
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the study of the evolution of modularity. It is argued that neural networks as a model of the nervous system and genetic algorithms as simulative models of biological evolution would allow us to formulate a clear and operative definition of module and to simulate the different evolutionary scenarios...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کامل